- 相关推荐
解决问题的策略教学反思
身为一名刚到岗的教师,教学是重要的任务之一,通过教学反思可以快速积累我们的教学经验,快来参考教学反思是怎么写的吧!下面是小编精心整理的解决问题的策略教学反思,欢迎阅读与收藏。
解决问题的策略教学反思1
“一一列举”的策略不是完全的新知识。在小学阶段虽然安排在五年级学习,但是在各册教材中都有渗透,这种解题的策略对学生来说不应该是陌生的`,所以,我布置了四道预习作业作为本节课的铺垫1、把7个苹果随意分成2堆,有哪几种分法?2、《科学世界》、《七彩语文》、《数学乐园》,从中任意订2本,有多少种不同的订法。3、解放军叔叔轮流换岗,第一次换岗时间是7:00,第二次是9:00,第三次是11:00,第四次是( ),第五次是( ),第六次是( )。4、用10根火柴棒摆一个长方形,有几种摆法?请你摆一摆,画一画。
从预习作业来看1、2、两题列举方法多样,第四题好多同学把10看成了长方形的周长。“一一列举”的策略不是一一列表。教学中可以用多种方法来解决问题,分类列举,用文字,用字母,画图等等,表格只是其中的一种方法,所以在教学中,我们引导学生先尝试用自己的方法解决问题。学生表达出了多种形式,有列式的,列表的,用长宽对应书写的。然后教师再向学生推荐表格列举。通过有序与无序、重复与遗漏列举的对比,让学生感悟列举要性。
寻找到突破口,找到“从那里想起?”。而后让学生体会“像刚才这样把事情发生的可能按一定的顺序,有条理地列举出来,这种策略就叫做一一列举”。为了上好这节课我精心研读教材,了解学生,和同伴反复交流,教学效果较为明显。
解决问题的策略教学反思2
本课是在学生学习了用列表的策略收集和整理信息,用从条件或问题想起的方法分析数量关系的基础上教学的,本课系统研究用画图的方法收集、整理信息,并在画图的过程中,分析数量关系,用“画图”的策略解决相关实际问题,帮助学生积累数学活动经验,感悟直观化的数学思想方法,发展几何直观,提高分析、解决问题的能力。
在教学例1前我先出示2题“看图解答”,引导学生看图说出问题、条件和数量关系,再列式计算,此环节的意义是通过从图中整理条件引导学生体会“图”的好处,同时也勾起了学生脑海中关于“画图”的回忆,也为例1的教学做好铺垫。例题1是用纯文字的形式出示的,由于题中的条件比较多,使学生在对文字的阅读理解中遇到了困难,对题中数量关系的理解也有些模糊,不过借助课一开始的“前置性练习”,很多学生能够想到用画线段图的方法来解决,但如何准确的在线段图上表示题意却有一定的困难,这时老师给出一条线段表示小宁,给学生一个“支点”,再让学生画另一条线段表示小春,并说说为什么要这样画,在画好了主体部分后让学生把题中的条件和问题在图上表示出来,从而完成一幅完整的线段图。在画好图以后,教师就要诱发学生“看图”进行推理,找出数量关系并进行分析,确定基本的解题思路,化图形为算式。本课中的例题不同与一般的简单的实际问题,由于其条件、数量关系的复杂性和抽象性,适合用画图的策略来解决,例题1呈现的是两个数量的和和差,通过假设让两个数量相同,期间通过演示使学生看到总数的变化,形象的展示了解题思路,加快了学生的理解速度,之后学生自主解题,板演并进行讲解,如此在观察中推理,在计算中比较,在比较中发现。最后的回顾环节,意在帮助学生已经积累起来的画图述问题、分析问题的经验上升到策略的层面,进而获得对策略的深刻的体验。
值得一提的.是学生对策略的掌握要经历从模仿到逐步内化的过程,“试一试”是对画图策略的强化,教师要进一步放手,“想想做做”重在引导学生内化策略,“画图”作为解决问题的一种常用策略,是学生通过画图不断解决问题的过程中逐步感悟获得的,本课学习,画图不是最终目的,不可能仅凭一两堂课就能使学生掌握,画图是一种中介,是为了学生更好的学会思考,随着学习的深人,学生所遇到问题的类型在不断变换,而解决这些不同类型问题的策略却始终如一,学生对画图策略的运用越来越娴熟,对策略的理解也越来越深刻,从而帮助积累更多的解决问题的经验,感受策略的价值,提升数学思想方法。
解决问题的策略教学反思3
解决问题的策略从条件想起是三年级上册新增的内容,重点是让学生利用从条件想起的策略解决问题,《解决问题的策略》教学反思。对于三年级的学生来说是第一次接触“解决问题”也是第一次接触“策略”。为了让孩子形成解决问题的一些基本策略,在快乐和轻松的氛围中发展合作交流能力,我跟我们级的老师进行多次探讨,在几次磨课过程中感受很多,对“从条件想起的策略“这课教学有了更为深刻的认识,下面就谈一谈我的几点认识。
第一、精彩的导入是一节课良好的开始
导入是思维的起点,好的导入可以激发学生的学习兴趣、动机,调动学生学习的积极性,往往关系着学生学习这一节课的效果如何。如果导入成功,学生就会兴趣盎然,精力集中,思维活跃,理解和记忆的质量就会相应提高。所以课堂一开始我就“挑逗”孩子的味觉,事先准备了孩子爱吃的棒棒糖,并说这是老师为举手积极的小朋友准备的奖品,紧接着问“猜猜这里面有多少个棒棒糖”,教学反思《《解决问题的策略》教学反思》。在孩子们都猜错的情况下,给孩子们一个条件,他们发现条件很重要,从而揭示课题“今天我们就来研究怎样根据条件解决问题”。这样的导入能激发孩子的表现欲,让他们积极地开动脑筋,又能很好的揭示这节课的主题。
第二、适当的教材重组能提高教学质量
在小学数学的教学过程中,教材的编排虽然已经考虑到学生的共性,但毕竟存在地域、群体乃至个别的差异。在这种情况下,就需要教师在把握教材特点的基础上,适当的重组教材,从而做到优化教学,使每个孩子都可以充分地发展和学习。“从条件想起的策略”这课例题只出现两种方法解题,所以我教学例题时问“还有没有其他方法”孩子发现还有其他比较好的方法,解题思路的多向化也能很好的激发孩子的学习兴趣。想想做做内容量较大,所以我也进行了重组,原先的五道题我只用了三道,并对最后一题进行了提高。想想做做第一题由于比较难理解,我将知识分解,降低学生的学习难度。这样的目的是为了在提高教学质量的同时,使学生在学习中既长知识,又长智慧,身心也能得到健康发展。
第三、课堂是孩子的`“课堂”
在前几次的试教中,我发现整堂课我说的太多,有时候孩子说的挺好我还要再强调一遍。这种情况就导致了孩子的学习效率不是太高。其实课堂是孩子的,学生与学生的互动与对话应该体现在课堂的每一个细节中,在课堂上一定要让出充分的时间给孩子“说”。孩子能说的就让孩子说。在例题教学时让孩子说一说“以后每天都比前一天多摘5个”是什么意思,我先让孩子自己思考一会儿,然后小组里说一说,最后全班一起说一说。用策略时也是让孩子讲给孩子听,先根据什么求出什么,再根据什么求出什么,老师只是适当的点拨一下。社会的发展越来越需要孩子们具有较强的口头表达能力,做为老师就应该提供各种机会让孩子各抒己见,学生无暇率真声音的课堂应该是最“动听”的课堂吧!
解决问题的策略教学反思4
“解决问题的策略”教学片断与反思
新课标提出要重视培养学生“形成解决问题的基本策略,体验解决问题策略的多样性,发展实践能力与创新精神。”如何践行这一理念呢?下面结合苏教版国标本五年级上册P63“解决问题的策略”例1的教学实践谈点粗浅的认识:
教学片断
师:王大叔想用18根1米长的栅栏围成一个长方形羊圈,他会怎么围呢?
(出示例1)
师:这句话中告诉我们什么信息?
生:这个长方形羊圈的周长是18米。
师:猜想一下,他会怎么围呢?
生1:用6根栅栏做长,3根栅栏作宽。
生2:还可以用8根栅栏做长,1根作宽。
师:你们是怎么想的?
生:要围成一个长方形,就要知道这个长方形的长与宽,根据条件知道长方形的周长是18米,可以知道长与宽的和是9米。
师:有没有不同的想法?
生:我是摆出来的,用8根栅栏做长,1根栅栏作宽。
师:同学们的想法都有道理,但现在王大叔思考的问题却是怎样围面积最大?你们能帮他解决这个问题吗?
生3:应该选长为8米,宽为1米的长方形。
师:为什么呢?
生:我觉得面积最大,它的长和宽就应该最大。
生4:不对,我觉得应该选长是5米,宽为4米的长方形。5×4=20,8×1=8,20比8大。
……
师:到底怎样围面积最大?光靠这样简单的猜想和无谓的争议是不够的,你们有没有更好的解决办法吗?
生:我觉得应该把各种情况的长方形都算一算,就知道哪种面积最大了。
师:前面我们学过列表的方法整理数据,现在就请大家用列表的方法把各种情况都整理一下,再算一算。出示下表:
长(米)
宽(米)
面积(平方米)
(学生列表整理,计算汇报,教师把相应数据填入表中)
生:我们发现长5米、宽4米的长方形面积最大。
师:刚才大家用列表整理数据的办法验证了大家的猜想,可能有的同学猜想正确,也可能错误了,但都不要紧,关键的是我们通过这个问题的探究给我们一些启发。现在大家再次观察一下上面的表格,你有什么新的'发现?然后在小组内相互交流交流。
生:我知道了周长相等的长方形,面积不一定相同。
生:我觉得长方形的长和宽越接近时面积越大。
生:我发现长方形的长越大,宽越小,面积就越小。
师:这是为什么呢?同学们能不能闭上眼睛在头脑里想一想围成的长方形分别是什么样的?有什么感悟?
生:老师,我明白了当长方形的长越大,宽越小,围成的长方形就越扁,它的面积就越小,如果长为9米,宽为0米,这个长方形的面积就为零了。
生:老师,还可以围成更大的面积,只要把两根栅栏都平均剪开,这样就可以围成一个正方形了,它的边长都是45分米。
师:这是一个新的发现,这个发现有没有道理呢?相信大家能得出正确的回答……
教学反思
“策略”的习得不同于知识与技能的掌握,它对学生的数学学习提出了更高的要求,也成为我们开展新课改实践的新课题。纵观本课例的教学过程,有下列启示:
1、凸现问题的探究价值与开放性——形成策略
策略的形成首先源于什么样的数学问题,而什么样的数学问题又影响着什么样的解决策略。教材上原本的设计是“围成的羊圈长8米,面积是多大呢?”教者在执教时将之巧妙地改为“王大叔会怎么围呢,怎样围面积最大?”比较两者的提法,显然后者的提法更富有探究价值,更具有开放性。正是源于问题的挑
战性,学生的学习兴趣盎然,思路放得开,能积极地尝试各种不同的策略进行探究,猜想验证、画图、列表等不同的问题解决策略自然而然生成。
2、紧扣“数学思维发展过程”这个学习活动核心——优化策略
标准提出,无论是什么样的问题解决策略的产生,都必须以“观察、思考、猜测、交流、推理”等富有思维成分的活动过程为其载体。本课例中教者紧紧扣住“数学思维发展过程”这一核心,适时地引领着学生的思维不断攀爬提升,不断提升策略选择的思维品质。如出示问题后,教者提出“猜想一下,他会怎么围呢?”引导学生从数学的角度分析问题、形成策略;当学生对各种围法进行争议时,教师提出“光靠这样猜想、争议还不够,你们有没有更好的解决办法吗?”逼着学生另辟蹊径,进行策略改向;在学生以为顺利解决问题后,教师又提出“可能有的同学猜想正确,也可能错误了,但都不要紧,关键的是我们通过这个问题的探究给我们一些启发”,引导学生开展交流与评价,进行策略反思。这样,一步步地引导学生用数学的眼光提出问题、理解问题、解决问题,发展思维,优化策略。
3、尊重学习个性,彰显创新精神——发展策略
列表收集整理信息,是本课例要求学生掌握的一个基本策略,也是一本课的重点,但教者在教学活动中充分尊重学生的个性特点,基于此又不局限于此,让学生在体验不同的策略过程中个性得到张扬,从而激起创新的火化。比如,教者在学生提出不同的围法后,让学生大胆地直觉“猜测一下,哪一种围法面积最大?”再如,学生通过列表验证了猜测解决了问题,教者却未停留在问题解决的结果上,而是进一步引导学生“能不能闭上眼睛在头脑里想一想围成的长方形分别是什么样的?有什么感悟?”这样数形结合,进一步挑起究其竟的心理冲突、不满足的欲望,为形成富有理性的数学思考积累经验与感悟。
解决问题的策略教学反思5
今天教学了《解决问题的策略》练习课,昨晚让学生把P93第四题至第八题做在家作本上,从学生的作业情况来看,对这个单元的内容掌握的还可以,除了有几个学生对追击问题没有搞懂之外,所以在上课之前改变了按部就班的程序,开始重点讲了讲追击问题,然后出了两道变式题想考一考孩子们的反应能力。
1、阳阳和冬冬从同一地点反向出发,沿着环形跑道赛跑。阳阳每分钟跑340米,冬冬每分钟跑260米,经过2分钟两人第三次相遇,跑道一周长多少米?
2、一辆汽车长8米,一座大桥长1992米,这辆汽车以每分钟250米的.速度过桥,这辆汽车从上桥到下桥一共用了几分钟?
结果第一题大概有十几个学生通过画图解决了,但第二题只有两三个人做出来。看来平时还要注重学生的思维训练。
今天教学了《解决问题的策略(行程问题)》,从预习情况来看,学生对列表格的方法比较钟爱,可能是觉得画图比较麻烦吧,所以新授就重点讲了如何画图,如何画好图。特别是如何把图画的比较标准一些,这对学生解决问题还是有很大帮助的。
这类问题类型比较多,新授的内容又太简单,所以花在练习上讲解的时间比较多。特别是追击问题,学生比较难理解,所以在课堂总结的时候,我让学生分别上台演示了相遇问题、相背问题、追击问题,我想,这样学生就有了更直观的认识,对他们画图也应该是有很大帮助的吧。
今天教学了《解决问题的策略(行程问题)》,从预习情况来看,学生对列表格的方法比较钟爱。我想有两个原因,一是列表格的方法以前专门有学过,二是画图的方法比较麻烦。所以在新授的时候我重点讲了怎样画线段图,如何把线段图画的比较准确、美观。
虽然今天的教学内容并不难,只是相遇问题和相背问题,但在练习中却又生成出许多新的问题,如:环形跑道、追击问题等。而如果仅靠课堂上学的知识,学生是很难独立解决这些问题的,所以当出现新问题的时候,有很多学生不知从何下手,我只好请学生上台直观演示,效果还行。
明天的练习课应该把行程类问题整理一下,然后再加强练习吧。
解决问题的策略教学反思6
“解决问题的策略”这一单元,重点介绍学生在解决问题时需要经常使用的、基本的解题策略。对于四年级的学生,第一次接触“策略”,对策略的含义并不清楚。教学一开始,以学生熟悉且感兴趣的故事《乌鸦喝水》引入新课,让学生初步感受到选择合适的策略在解决问题的过程中是有效的、必要的。
我在教学过程中,调动学生学习兴趣,但没有让学生自己找到解决整理的方法,而是为了讲知识而直接告诉学生直接用表格形式整理信息。使学生选择方法受到限制,约束学生思维。不能让学生通过多种方法比较,而亲身体会列表法的好处,没有做到新知识渗透。
用列表的方法整理信息,教学的重点之一是让学生学会收集题目中的条件和问题,并按一定的结构填写在表格里。在教学中,教师应注意发挥自己的引导作用,在学生初步设想整理信息方法的基础上,指导学生将题目中的信息对应地填写在表格里,将请填写格式,已知条件和问题的位置。在预设时忽略了问题的存在。
对为什么要列表?列表有什么好处?不能仅仅停留在简单地感觉“清晰、简洁”上,还要让学生学会利用表格,分析数量关系,明确解决问题的思路。教学时,注意充分引导学生分别观察表格的每一行,体会既可以从条件出发想问题,也可以从问题出发想条件,初步明确地感受综合法和分析法这两种不同的思考方法。在这一过程中,学生能进一步体会表格是合理的、必要的,从而形成对这一解题策略的'体验。将题目中的信息对应地填写在表格里。对于这一点我强调的较多,从左往右看,你发现了什么?(本数与钱数对应,每本价钱不变)要求5本多少元和42元买几本,都要先算出什么?观察:从上往下看,又发现什么?(本数增加,要付的总数增加)如果买10本,要付的钱跟42元比会怎样?对数量关系进行重点引导。
很遗憾的是我的课堂教学时间掌握的不好,缺乏练习。
我应充分利用教材安排的实际问题,让学生尝试列表整理题目中的信息,并分析数量关系,解决问题,这对学生进一步体验策略是及时而有效的。让学生回顾解决问题的过程,再次经历对数量关系的完整认识,更清晰地体会分析实际问题数量关系的基本策略,积累丰富的解决问题的经验,发展数学思考能力。
解决问题的策略教学反思7
本节课是苏教版五年级上册的《解决问题的策略— 一一列举》。在此之前学生已经学会从条件想起,从问题想起,列表和画图来解决问题,对这这几种策略解决问题的价值已经有了体验和认识,因此本节课我开门见山,先是回忆了这几种策略,让学生了解学习这些策略的好处,从而引出了课题。
在后续的课堂教学中由于我的课前准备不够充分,从而导致了一系列的问题。
1、课前没有去开好电脑投影等设备,导致没能准时上课,还有在课堂教学中,需要使用实物投影呈现学生结果时,投影不会使用,课堂气氛比较尴尬。只能让学生口头表达想法,没能直观的有序和无序这两种列举方法,结果可想而知,比较空洞。
2、课堂气氛比较沉闷,学生不够积极。在语言方面我是比较欠缺的,不懂得如何调动学生的积极性,语气比较比较平铺直叙,没有激情。导致在让学生讨论交流的时候,就像一潭死水。几位老师也给出了意见,在学生讨论不热烈的时候,可以下去加入他们的讨论,让他们知道一个正确的方向。如果有几个组讨论起来了,可能就会带动一个全班讨论的氛围。
3、上课比较随意,尤其是站姿,没有气势。在上完课后,几位老师模仿了我的站姿后,我自己都觉得有点颓废的感觉,在之后的教学中一定要努力改进。
4、在教学设计上,让学生读题后就要求找出一种围法,这里可能放的`过早,应该要让他们正确审题,明确要围得是长方形,长方形的周长是22米,长和宽都是整米数。由于我的急于求成,想让学生先得到如何判断所围长方形是否符合条件即“长+宽=11米”,这对于学生的要求过高。
5、学生的读题不够整齐响亮,回答问题不够完整。以后要在课堂上加以训练。培养学生的表达能力。
6、讲的太多,留给学生思考的时间太少。对于一些问题引导的不到位,导致学生回答容易偏离问题。
7、对学生的关注不够,从回答人数来看只有接近50%,没能很好的关注全体学生。还有在学生练习时,我走下去检查时,通常就是站着看一眼,给学生一种距离感,没有亲近学生。
解决问题的策略教学反思8
师:请你用自己的方法尝试解答一下。
学生自己解答,教师巡视,指导个别有困难的学生,并给予了提示,并且收集了几种比较典型的解题方法。
师:好,老师选了几个学生的作业,我们来听听听他们的想法。第一位同学在解题时时有困难的,所以,老师给她了帮助,我们一起来看一看。出示表格。
生1:30是第一天的,第二天比第一天多5个,所以是35个,第三天比第二天多5个,所以是40个,第四天比第三天多5个所以是45个第五天比第四天多5个,所以是50个。
师:很好,这种方法正确吗?
齐答:正确
师:我们一起来念一念,检验一下对不对。
师与生一起读:第二天35、第三天40、第四天45、第五天50。
师:是不是都多5个?求出答案后,我们应该回过来检验一下。
师出示列算式的方法。
生2:第一天是30个,第二天比第一天多5个,30+5=35个,第三天比第二天多5个,35+5=40个,第四天比第三天多5个,40+5=45个,第五天比第四天多5个,45+5=50个。
师:这种方法可以吗?
齐答:可以。
师:他是一步一步算出来的`。我们一起来念一念,答案求出来我们要回过头去检验。从这里你能得出第3天,第5天吗?
齐答:第三天是40个,第五天是50个。
师出示生3的作业,请生3来介绍。
生3:我发现第三天比第一天多了两天,也就多了两个5,所以2x5=10,再把第一天的加上多的就是第三天的40个。
师:根据他的思路,我们来想想第五天比第一天多了几个5?
学生回答:4个。
师:可以怎样列式?
生:4x5=20,30+20=50个。
师:求出最后的答案正确吗?
生:正确。
出示错例
师:这位同学对吗?
全班同学一起来看,学生举手发现:第五天5x5+30=55是错误的。
分析:
整个板块老师收集了三种正确的方法和一种错例来进行展示,这三种正确的解法是比较有代表性的,都是学生在理解了题意和数量关系后写出的,错例的展示提醒了学生从条件出发的重要性。对于第三种方法展示是,老师问了全班“第五天比第一天多了几个5?”这是引起全班同学的注意,不是每道题都一定要一步一步的解决,这是对于学习的提升。
建议:
从坐在边上的同学情况看,有一个错误,两个不会做,只有一个会做。我们可以看出,一部分学生对于这题的解决还是有难度的,所以是不是可以准备一些表格纸,装进信封放在小组长那边,如果谁有困难,可以到组长那边的信封里拿提示,适当降低点难度,我想这样全班就都会解答这些题了,从而也告诉学生所谓的解决问题的策略是有很多种的。
解决问题的策略教学反思9
果然,今天教学时,自学质疑部分,孩子们对一些基本的内容都了解的较多,对部分实际问题也能列出算式计算出结果,但还是不太理解为什么要替换,特别是练一练的内容更是讳莫如深,一头雾水。
于是我引导孩子们首先理解为什么要替换。“如果不替换,题目中就有两个未知数,而且两个未知数的题目我们都是用什么方法解答的?”“用方程。”我鼓励孩子们用方程解决问题。只有三分之一的孩子很快解答完。“用方程解决问题是很好的方法。但总是很费事的。如果可以不用方程就可以很快得出结果,我们是不是更喜欢?”“是!”孩子们异口同声。
“替换就可以帮助我们解决这样的问题。”我引导孩子们按书上的替换的思路理解,大多数孩子露出了满意的'神色。我还引导学生总结出两种数量有倍数关系时,可以“以一换几”或“以几换一”的替换方法。
练一练的问题,孩子也无从下笔了,因为这本来就是另一种情况的问题。我首先让孩子们理解替换的可行性方式:
一对一的替换。从而发现替换后出现的新问题。于是我让学生讨论:如果把大盒子都换成小盒子,会出现什么情况?如果把小盒子都换成大盒子,又会出现什么情况?引导孩子们发现:因为两种数量之间的不相等,替换后就出现了剩余或不足。在引导孩子比较、讨论、推论,得出剩余的部分要从总数中减去,不足的部分要在总数的基础上加上。
在后面的练习中,孩子们大多数能比较熟练地用替换的策略解决简单的实际问题。教学的难点得到了突破。
这节课的成功教学,更是我尝到了有效预习在教学新知的重要作用,它帮我节省了大量的教学时间,使课堂教学的效率大大提高。
我要大声说:预习,爱你没商量!
解决问题的策略教学反思10
1、课前沟通不到位。
在一个陌生的环境,又有一些老师听课,孩子们本来就紧张,课前不仅没有做到及时与孩子们沟通,帮助他们减压,还用录播开始无形中又增加了压力,以至于原来在教室里积极活跃的孩子们,一个个下的正襟危坐、不敢越雷池一步,甚至到前面板演时腿发抖。作为教师课前一定要关注孩子的状态,及时做出调整。
2、课堂预设不到位。
在让两个孩子板演计算过程环节用时过长,以至于虽然完成了研究、总结、提炼出了解决两个未知量的问题可以用假设策略,但是没有时间做一些相应练习去加深印象。如果在学生选择方法书写环节意识到这一点,调整成投影展示,不仅可以完成强调步骤的完整条理,也可以空出时间加大练习。
虽然本节课没有完美落幕,虽然课堂练习度没有达到,但是在独立思考、小组交流、全班汇报,比较提炼假设策略等环节中,孩子们了解了什么情况下可以用假设,假设的关键是什么,假设的`目的是什么,在假设时什么量不变,什么量改变。书写巡视中发现虽然步骤不是太完整,但是都能用自己喜欢的方法把假设策略表达出来。课堂上不可能做到面面俱到,本节课只要让孩子们了解到这些,在下节课着重强调书写格式是不是会更好!
解决问题的策略教学反思11
对于新教材中“假设”的策略我是这样理解的:“假设”是解决问题的一种思想方法,“换”是为了实现“假设”的一种手段。策略的教学更强调让学生感悟和体验,只有真正地充分地感悟和体验,才能实现对于策略的“悟”。本课,我带领学生提出问题、研究问题、解决问题、归纳总结,较充分地经历了体验与感悟的过程。
1.比较式渗透,自然过渡导入
课始我由易渐难,让学生抢答:(1)把720毫升果汁,倒入9个同样大的杯子里,正好可以倒满,平均每个杯子的容量是多少毫升?(2)把720毫升果汁,倒入3个同样大的杯子里,正好可以倒满,平均每个杯子的容量是多少毫升?紧接着出示:例1小明把720毫升果汁倒入6个小杯和1个大杯,正好倒满。小杯的容量是大杯的13。小杯和大杯的容量各是多少毫升?继续抢答,当学生迟迟不举手、面露为难之色时,我忙上前关切地问:“怎么了?”生道:“有点儿难?”我顺势同时出示这3道题,说:“这题和前两题比,难在何处?”有了比较,学生立即反映出:“这题有两种杯子,两个未知量,而前两题只有一个杯子,一个未知量。”我顺势利导,装作恍然大悟:“噢,是呀,如果这一题也能像前两题一样只有……学生接过话茬说:“要是也只有一种杯子就简单了。”我开玩笑地说:“你们想得可真美!这个美好的愿望能实现吗?”抓住学生这一迫切地心理需要,我紧接着引导学生仔细分析题中的数量关系,展开了新授序幕。
正是因为有了比较,在接下来的学习中学生才切身感受到运用假设策略的好处,才乐于运用这种策略。
2.步步逼问,注重学生问题意识的`培养
假设策略的本质是对于一个新问题通过对未知量进行假设,然后通过分析逐步逼近正确答案,最后把答案给“找”出来,从而使问题得以解决,它体现了一种逐步逼近的思想。也就是对于假设的策略来说,假设只是一个引子,其根本应该是根据两种未知量之间的关系实现假设,是通过“换”来“找”出答案。当学生分析完题中的条件时,我话锋一转:“还记得刚刚咱们许下的愿望吗?”“你想假设都是什么杯子?你的这个愿望能实现吗?怎么实现你的愿望?依据是什么?”“还有不同的想法吗?”在展示交流学生的解题过程时,我让学生互相提问,并对提问作出明确要求:“通过你的提问一步步逼出他说出具体的想法。”通过猜想启发学生思路,引导学生提出自己的假设,激发解决问题的积极性,营造解法多样化的氛围。最后让学生选择喜欢的方法列式解答。
有学生这样列方程:3X+X=720,立即有学生反对,我忙引导:“你来问他,通过你的提问让他知道自己的错误。”那学生立即问:“你是怎么设的?”答:“我设小杯的容量是X毫升,大杯是3X毫升。”问:“那你方程中3X表示什么?”答:“大杯的容量。”问:“X是什么?”答:“小杯的容量。”问:“X表示几个小杯的容量?”答:“1个小杯的容量。”问:“大杯的容量加1个小杯的容量等于720毫升吗?”生傻眼……
3.及时归纳提炼,形成策略。
虽然策略的学习关键在悟,要多让学生体验和感悟,但这并不因此就否定或削弱总结与概括的作用。事实上,必要的总结、归纳与提炼对于学生形成对策略的清晰的认识,建立策略模型起到非常重要的作用。本课,当学生经历了铺垫渗透,探索感悟两个环节后,对假设的策略已经有了一定的认识,这时就适时引导学生进行归纳提炼:回顾解题过程,你有什么想说的吗?在解决例1时我们遇到了什么困难,通过和前两题的比较有了什么想法,怎样解决困难的,需要注意什么?通过这样的归纳与提炼,学生对假设的策略就有了整体的认识,从而可以在解决问题中实际正确地运用假设的策略。
4.由形象到抽象,培养学生的数学意识
整节课,我由扶到放,出示例题时结合情境图让学生理解题意,并画一画体现“换”的过程,这样更形象,更简单易懂。画图假设比较直观,利于学生的思考,但我们的思维不能一直停留在直观的画图等具体方法,要逐步抽象,并用计算的方法体现假设的思维过程。所以当学生对“假设”的思想初步感悟后,在练习时我先是引领学生分析关键句,说一说解题思路,再完成,最后是完全放手让学生独立解决问题再向指名汇报叙说自己的解题过程。
总之,数学的学习,对学生来说,能使其终身受用的,绝不仅仅是知识,数学思想方法的获得更重要,我想这也应该是解决问题的策略的教学目的之一。
解决问题的策略教学反思12
这一课时最关键的是在例一,因有对以前知识的复习,所以在掌握程度上必须把握得当,让学生明确使用的基本思路是怎样的,然后再大规模地开展策略的教学,让学生感知一一列举的优点!
对于例二,学生对于这里含有的.找规律的知识掌握较好,因此容易上手,可以让学生明确掌握用表格的方法来实现一一列举的策略,后来证明这是对的,用表格的方法,可以将一一列举的策略的优点发挥到最好,也让学生更容易接受。
解决问题的策略教学反思13
解决问题的策略—画图,用画图的策略来解决和差问题。和差问题的计算本来就是一个重点,也是学生容易混淆的知识点。
要想让画图在学生心目中真正成为一种解题策略的话,我觉得应体现在以下几方面:首先,学生要会画图,会用图简要、完整地呈现题目中的信息。其次,要会用图,能利用图对题目中的信息进行分析,找到数量关系,最终找到解决问题的`方法。最后,对画图要有感情,要喜欢画图,不能让画图成为一种累赘,一种麻烦,而要让它成为一种需要,一种解题策略。
这节课,这几方面完成得都比较好。首先,学生学会了画图。由于在这之前学生基本上没有画图的经验,完全放手让学生去画,困难太大,所以老师给出了一小部分的图,算是一个引路,给了他一根拐棍,因为位置确定也是很重要的,所以老师的指导作用在这里也体现得较好。然后放手让学生自己设计、动手画好这幅图。交流时展示部分学生作品,让大家来讨论,提出改进意见,集大家的智慧于一体,最后师生共同完成一幅完整的线段图。在这一过程中,学生既有动手实践,又有合作交流,在体验中最终学会了画线段图。然后让学生比较运用哪种策略更好些,体会到在这儿列表不能反映所有信息,不是很直观,但画图能把题目中的信息形象、直观地反映出来,便于我们分析解答。真正体会到画图策略的重要性。其次,学生会用图分析解决问题。图画好后,让学生说说从图中你知道了些什么?学生不仅能把题目中的信息全说出来,甚至还能说出基本的数量关系,很快就能用两种不同的解法解决了这个问题。说算理时,让学生上黑板指着图或表说,同学们都是指着图说,而且说得很到位,说明学生已基本会用图帮助自己分析问题,同时也进一步体会到了画图策略的优势。
最后,从一节课的表现来看,学生对画图有着浓厚的兴趣,试一试的图画得都比较好,而且解题方法都对。
解决问题的策略教学反思14
用列表法解决问题能使信息显得很有条理,在教学第一课时的时候有很多学生没有真正理解列表法的好处,第二课时是让学生用列表的方法去解决两积求和(差)的问题,让学生在解决问题的过程中,继续体验列表的价值,并能用分析法和综合法去寻找数量之间的关系。从而提高学生解决问题的能力。教学重点在于进一步学会用列表收集和整理信息的方法解决实际问题,而难点就在于怎样正确的运用列表的方法来整理较复杂的信息。
在第一课时的学习中,学生对于列表法的掌握并不好,主要在于不懂得列表的'好处以及怎样列表来思考分析问题,很多学生甚至是在算过结果后再去填表,把列表整理信息变成了一种无用的操作。因此本节课上我注意让学生仔细观察例题,发现信息比较多,比较乱,从而想到用列表的方法来整理,而在整理的过程中一是要学生抓住关键字,用最简洁的语言表述出最准确的意思,要从表格中就能看出题目的完整意思。比如象例题的3行桃树,每行7棵,很多学生只会整理3行和7棵,这里我就注意引导学生分析这两个条件放在一起表示的意思会让人误解为是3行一共栽了7棵,从而意思表达不准确,应该写清楚是每行7棵,这样比较准确。第二就是要会根据问题有选择地整理条件,如例题中给了我们三组条件,而问题是桃树和梨树一共有多少棵。通过让学生先自主整理列表,再汇报讨论,让学生明确条件虽多,但我们只需要整理与问题相关的条件即可。
在教学中也有学生是把所有的信息都整理在表中,就是整理一个3×3的表格,然后看问题求的是什么,根据问题再去表中找相关的信息.这样也是可以的,我给予了肯定,而且学生说出了在解决下一个问题时就不要重复列表了,就只要看这张表就可以解决问题.教学时没有采用固定的方法,而是让学生体会自己的方法,选择自己喜欢的列表方式去解决问题.
在上完试一试后,我没有直接让学生练习,而是让学生根据例题的信息自己提出问题,并让学生有选择地解决,这样做的目的一是巩固用列表解决问题的策略。二是看学生提问题,再根据问题选择条件整理的能力,而更重要是让学生获得解决问题的一些具体的经验。并通过比较把这些具体的经验上升到数学思考的高度,形成一定的解决思路。
通过上述的处理,学生对用列表来整理条件问题及根据表格来分析解答问题的掌握上还是比较好的,但是本节课我觉得也有几点不足。
一是上课时没有过用多媒体进行教学,学生列的表没有及时给大家展示,只能在黑板上画出学生的作品,耽误了一些时间.
二是从练习中可以看出,学生还没有自学养成用列表法解决问题的习惯,体现在做练习中,如果没有要求让列表,学生是不愿意列表的,导致时常做题出错.
三是当学生列表后,没有让学生多进行据表分析,对于整理好的表格进行分析得不够,可能也是因为我觉得这部分知识学生分析起来不太困难,但回想起来如果让一些后进一点的学生对说一说,多分析一下这些表格,对于他们用此方法再解答一些更复杂的实际问题可能会有一些更大的帮助。
四是学生的小组交流不够多,其实在教案中我设计了让小组活动交流的时间,但在实际的课程中,真正让学生交流看法的活动只有一次,而且个别学生在交流在做与课堂无关的事,说与课堂无关的话,使小组交流变成了形式.在后面的教学中应该严加要求努力加以改进。
解决问题的策略教学反思15
教学目标:
1、让学生在解决实际问题的过程中,初步体会用还原的方法整理相关信息的作用,学会运用从已知条件出发或从所求问题想起的策略分析数量关系,寻找解决问题的有效方法。
2、让学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。
教学重点、难点:
让学生体会策略的价值,并主动运用策略解决问题。
教学过程:
一、谈话引入
1、郁老师从家到学校很远,从海门出发依次经过三厂、树勋、万年才到海洪,那我从学校回家时该怎么走呢?(找出地名,倒过来)
2、有a、b、c三个杯子装有水,从a杯倒一些给b杯后,问原来的a杯和c杯哪个装有水多?怎么比?(将b杯的水倒回a杯后,a杯再和c杯比)
二、自主探索
1、教学例1
(1)出示“原来的”两杯果汁,提问:怎样才能让两杯果汁同样多?
(2)根据学生的实际回答操作,让学生发现甲杯减少了,乙杯增加了,而且甲杯和乙杯同样多。
(3)回顾操作过程,画出示意图,提问:原来两杯果汁各有多少毫升?
(4)分析:把甲杯中的`40毫升倒入乙杯,原来两杯的果汁总量有没有变化?一共是多少毫升?现在每个杯子里有多少毫升果汁?知道现在两个杯子里的果汁数量,怎样求原来两个杯子中的果汁数量?可以用怎样的方法?
(5)根据学生的回答,指导学生画图,组织交流展示。小结:“倒回去”是个好办法,用这个办法我们可以很容易知道原来两个杯子了各有多少毫升果汁。你能给这种好办法起个名字吗?(倒推法、逆推法、还原法等等)
(6)回想一下我们刚才是怎样解决这个问题的,按照解题过程把表格填完整。(出示表格)
(7)小结:解决这个问题,我们用到了以前学的画图,列表等策略,还新学到一种策略,就是——还原法。出示课题:解决问题的策略——还原。
2、教学例2
(1)出示例2,学生读题后说说这题数量的变化过程。
(2)请学生用自己喜欢的方式把这个数量变化过程清楚的表示出来。
(3)学生尝试整理,全班交流,出示下图:原有?张——又收集了24张——送给小军30张——还剩52张。
(4)要求小明原来有多少张,可以把上图倒推过去想,即用还原的方法,你能仿照上图表示还原的过程吗?
(5)学生尝试,交流,出示下图:原有?张——去掉收集的24张——跟小军要回30张——还剩52张。
(6)学生根据过程独立列式解答。检验答案正确与否,把答案放到题目中顺推,看剩下是不是52张。
(7)如果出现例题中的第二种解法,引导学生通过与第一种方法比较来理解:收集24张,送出去30张,相当于比原来少了6张。
(8)引导学生反思:解决例2是怎样用还原法的?你认为适合用还原法来解决的问题有怎样的特点?
三、应用巩固
1、填一填
练习十六第5题,根据箭头图说说思路与算式。
2、玩一玩
练习十六第10题,用四张扑克牌交换位置,说出交换的步骤与结果,想原来的排列顺序。
3、算一算
书89页的练一练。(25+1)×2=52
改题:若拿出一半少1张,又该怎样列式?(25-1)×2=48
4、找一找
练习十六第3题。
四、小结
1、总结学习的内容。
2、出示《李白买酒》的数学诗,
引导学生用还原法来解决问题。
反思:
1、怎样把握学生的学习起点?
课程标准指出:要从学生的认知发展水平和已有知识基础出发进行教学,在教学的伊始,教师是逻辑地显露与教学有关的旧知,朝着既定的方向牵引?还是充分相信学生,放开空间,让学生调度各自已有经验走向新知学习?在本案例中,通过现实生活中的“倒回去”,为后续的自元学习打开了一道思维的闸门,学生按自己的经验去建构知识,数学学习活动就变成了“一个生动活泼的、主动的和富有个性的过程。”
2、变“学数学”为“用数学”
学生学知识是为了用知识,但长期的应试教育使大多数学生不知道为什么学数学,学数学有什么用,因此,在教学时,我针对学生年龄特点,心理特征,密切联系生活实际,精心创设情境,让学生在实际生活中还用数学知识,使学生深刻认识到数学对于我们的生活有多么重要,学数学的价值有多大,从而激发了他们学好数学的强烈欲望子成龙,变“学数学”为“用数学”。
【解决问题的策略教学反思】相关文章:
《解决问题》教学反思09-02
《用连乘解决问题》教学反思10-18
《分数乘法解决问题》教学反思10-04
《用有余数的除法解决问题》教学反思07-14
小学数学分数除法的解决问题教学反思12-14
分数除法解决问题教学反思范文(精选3篇)11-28
用转化的策略解决分数问题教学反思09-03
用百分数解决问题的教学反思01-17
用百分数解决问题教学反思12-15